Sudan I

Hazard Alert Code Key:

Material Safety Data Sheet

MODERATE

LOW

Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

HIGH

PRODUCT NAME

Sudan I

STATEMENT OF HAZARDOUS NATURE

CONSIDERED A HAZARDOUS SUBSTANCE ACCORDING TO OSHA 29 CFR 1910.1200.

EXTREME

SUPPLIER

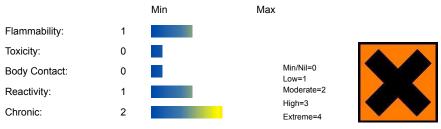
Company: Santa Cruz Biotechnology, Inc. Address: 2145 Delaware Ave Santa Cruz, CA 95060

Telephone: 800.457.3801 or 831.457.3800

Emergency Tel: CHEMWATCH: From within the US and Canada: 877-715-9305

Emergency Tel: From outside the US and Canada: +800 2436 2255 (1-800-CHEMCALL) or call +613 9573 3112

PRODUCT USE


■ Sudan dyes belong to the Solvent dye group. They are frequently called lysochromes (lyso- means dissolving and -chrome means colour). In structural classification, Sudans are diazo dyes. Azo colourant molecules can be described as aryl-N=N-R, where R is aryl, heteroaryl or -CH=C(OH)-. Sudans are used for demonstrating fats, triglycerides and lipoproteins present in tissues as biological stains. For colouring hydrocarbon solvents, oil, fats, waxes, floor polishes, cellulose ester varnishes, styrene resins and petrol. Antioxidant

SYNONYMS

C16-H12-N2-O, benzeneazo-beta-naphthol, benzene-1-azo-2-naphthol, 1-benzeneazo-2-naphthol, "C.I. 12055", "C.I. Solvent Orange Yellow 14", 1-(phenylazo)-2-naphthalenol, 1-phenylazo-beta-naphthol, 1-phenylazo-2-naphthol, "Atul Orange R", "Brasilazina Oil Orange", "Brilliant Oil Orange R", "Calcogas M", "Calcogas Orange NC", "Calco Oil Orange 7078", "Campbelline Oil Orange", Carminaph, "Ceres Orange R", "Cerotinorange G", "Disrpersol Yellow PP", Dunkelgelb, "Enial Orange I", "Fast Oil Orange", "Fast Oil Orange I", "Fast Orange R", "Grasal Orange A," "Fat Orange G", "Fat Orange I", "Fat Orange R", "Fat Orange RS", "Fettorange 4A", "Fettorange LG", "Fettorange R", "Grasal Orange", "Grasan Orange R", "Hidaco Oil Orange", "Lacquer Orange VG", "Motiorange R", NCI-C53929, "Oil Orange 31", "Oil Orange 2311", "Oil Orange 2B", "Oil Orange E", "Oil Orange PEL", "Oil Orange R", "Oil Orange R-14", "Oil Orange 7078-V", "Oil Orange 2-7-78", "Oleal Orange R", "Orange 2 Insoluble", "Orange Insoluble OLG", "Orange PEL", O, "range A L' Huile", "Orange 3RA soluble in grease", "Orange Resenole No. 3", "Orange R Fat", "Soluble Organol Orange", "Crient Oil Orange PS", "Petrol Orange TR", "Somalia Orange I", "Soudan I", "Spirit Orange G", "Resinol Orange", R, "Sansel Orange G", "Scharlach B", "Silotras Orange TR", "Somalia Orange I", "Soudan I", "Spirit Orange", "Patro Oil Orange", "Tetrogras Orange SV", "Toyo Oil Orange", "Waxakol Orange GL", "Waxoline Yellow I", "Waxoline Yellow IM", "Waxoline Yellow IP", "Waxoline Yellow IS", "Zlut RozpoustedIova 14", azo-dye-stuff

Section 2 - HAZARDS IDENTIFICATION

CHEMWATCH HAZARD RATINGS

CANADIAN WHMIS SYMBOLS

EMERGENCY OVERVIEW

May cause SENSITIZATION by skin contact. Limited evidence of a carcinogenic effect. Possible risk of irreversible effects. May cause long-term adverse effects in the aquatic environment.

POTENTIAL HEALTH EFFECTS

ACUTE HEALTH EFFECTS

SWALLOWED

■ The material has NOT been classified as "harmful by ingestion". This is because of the lack of corroborating animal or human evidence. The material may still be damaging to the health of the individual, following ingestion, especially where pre-existing organ (e.g. liver, kidney) damage is evident. Present definitions of harmful or toxic substances are generally based on doses producing mortality (death) rather than those producing morbidity (disease, ill-health). Gastrointestinal tract discomfort may produce nausea and vomiting. In an occupational setting however, unintentional ingestion is not thought to be cause for concern.

EYE

■ Although the material is not thought to be an irritant, direct contact with the eye may cause transient discomfort characterized by tearing or conjunctival redness (as with windburn). Slight abrasive damage may also result. The material may produce foreign body irritation in certain individuals.

SKIN

The material is not thought to produce adverse health effects or skin irritation following contact (as classified using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable gloves be used in an occupational setting.

Open cuts, abraded or irritated skin should not be exposed to this material.

Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

INHALED

■ The material is not thought to produce adverse health effects or irritation of the respiratory tract (as classified using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting.

■ Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled.

■ Not normally a hazard due to non-volatile nature of product.

CHRONIC HEALTH EFFECTS

There has been concern that this material can cause cancer or mutations, but there is not enough data to make an assessment.

Skin contact with the material is more likely to cause a sensitization reaction in some persons compared to the general population.

Exposure to the material may result in a possible risk of irreversible effects. The material may produce mutagenic effects in man. This concern is raised, generally, on the basis of

appropriate studies using mammalian somatic cells in vivo. Such findings are often supported by positive results from in vitro mutagenicity studies.

Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems.

Long term exposure to high dust concentrations may cause changes in lung function i.e. pneumoconiosis; caused by particles less than 0.5 micron penetrating and remaining in the lung. Prime symptom is breathlessness; lung shadows show on X-ray.

Solvent Yellow 14 is carcinogenic in rats, inducing neoplastic nodules of the liver, but is non-carcinogenic in mice. Solvent Yellow 14 induces micronuclei in the bone marrow of rats after a single oral dose of 250 mg/kg and above. In mice, however, there was no increased incidence of micronuclei after single oral doses of up to 2000 mg/kg Solvent Yellow 14, thus reflecting the species specific carcinogenic effect of the compound. The structurally related azo dye FD & C Yellow No. 6 is noncarcinogenic to rats and mice and gave a negative result in both rat and mouse bone marrow micronucleus tests after a single oral dose of up to 2000 mg/kg. The rat bone marrow micronucleus test is therefore capable of discrimination between the carcinogenic and the non-carcinogenic azo dye. A negative result was obtained for Solvent Yellow 14 in an in vivo liver unscheduled DNA synthesis assay after oral doses up to 1000 mg/kg. Solvent Yellow 14 (Sudan I) is a component of several types of "Kumkum". These are colored cosmetics frequently applied to the center of the forehead by Hindu women. Pigmented allergic contact dermatitis to "kumkum" has been reported. It was associated with Brilliant Lake Red R and Sudan I allergy. These might be the causitive allergens. Three of 7 brands of red "kumkums" analyzed by gas chromatography-mass spectrophotometry were found to contain various concentrations of Sudan I. They ranged from 2.789 mg/g to

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS

NAME	CAS RN	%
C.I. Solvent Yellow 14	842-07-9	>98

Section 4 - FIRST AID MEASURES

SWALLOWED

- Immediately give a glass of water.
- First aid is not generally required. If in doubt, contact a Poisons Information Center or a doctor.

8.694 mg/g. Sudan I is probably the cause of pigmented allergic contact dermatitis in red "kumkum".

EYE

- If this product comes in contact with eyes:
- Wash out immediately with water.
- If irritation continues, seek medical attention.
- Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

SKIN

- If skin contact occurs:
- Immediately remove all contaminated clothing, including footwear
- Flush skin and hair with running water (and soap if available).
- Seek medical attention in event of irritation.

INHALED

- If fumes or combustion products are inhaled remove from contaminated area.
- Other measures are usually unnecessary.

NOTES TO PHYSICIAN

■ Periodic medical surveillance should be carried out on persons in occupations exposed to the manufacture or bulk handling of the product and this should include hepatic function tests and urinalysis examination. [ILO Encyclopaedia].

Section 5 - FIRE FIGHTING MEASURES							
Vapour Pressure (mmHG):	Negligible						
Upper Explosive Limit (%):	Not available.						
Specific Gravity (water=1):	0.6						
Lower Explosive Limit (%):	Not available.						

EXTINGUISHING MEDIA

- Foam.
- Dry chemical powder.
- BCF (where regulations permit).
- Carbon dioxide.
- Water spray or fog Large fires only.

FIRE FIGHTING

- Alert Emergency Responders and tell them location and nature of hazard.
- Wear breathing apparatus plus protective gloves.

- Prevent, by any means available, spillage from entering drains or water course.
- Use water delivered as a fine spray to control fire and cool adjacent area.
- DO NOT approach containers suspected to be hot.
- Cool fire exposed containers with water spray from a protected location.
- If safe to do so, remove containers from path of fire.
- Equipment should be thoroughly decontaminated after use.

GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS

- Combustible solid which burns but propagates flame with difficulty.
- Avoid generating dust, particularly clouds of dust in a confined or unventilated space as dusts may form an explosive mixture with air, and any source of ignition, i.e. flame or spark, will cause fire or explosion. Dust clouds generated by the fine grinding of the solid are a particular hazard; accumulations of fine dust may burn rapidly and fiercely if ignited.
- Dry dust can be charged electrostatically by turbulence, pneumatic transport, pouring, in exhaust ducts and during transport.
- Build-up of electrostatic charge may be prevented by bonding and grounding.
- Powder handling equipment such as dust collectors, dryers and mills may require additional protection measures such as explosion venting.

Combustion products include: carbon monoxide (CO), carbon dioxide (CO2), nitrogen oxides (NOx), other pyrolysis products typical of burning organic material.

May emit poisonous fumes.

May emit corrosive fumes.

FIRE INCOMPATIBILITY

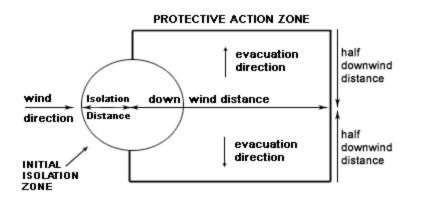
Avoid contamination with oxidizing agents i.e. nitrates, oxidizing acids, chlorine bleaches, pool chlorine etc. as ignition may result.

PERSONAL PROTECTION

Glasses: Chemical goggles. Gloves: Respirator: Particulate

Section 6 - ACCIDENTAL RELEASE MEASURES

MINOR SPILLS


- Clean up waste regularly and abnormal spills immediately.
- Avoid breathing dust and contact with skin and eyes.
- Wear protective clothing, gloves, safety glasses and dust respirator.
- Use dry clean up procedures and avoid generating dust.
- Vacuum up or sweep up. NOTE: Vacuum cleaner must be fitted with an exhaust micro filter (HEPA type) (consider explosion-proof machines designed to be grounded during storage and use).
- Dampen with water to prevent dusting before sweeping.
- Place in suitable containers for disposal.

MAJOR SPILLS

Moderate hazard.

- CAUTION: Advise personnel in area.
- Alert Emergency Responders and tell them location and nature of hazard.
- Control personal contact by wearing protective clothing.
- Prevent, by any means available, spillage from entering drains or water courses.
- Recover product wherever possible.
- IF DRY: Use dry clean up procedures and avoid generating dust. Collect residues and place in sealed plastic bags or other containers for disposal. IF WET: Vacuum/shovel up and place in labelled containers for disposal.
- ALWAYS: Wash area down with large amounts of water and prevent runoff into drains.
- If contamination of drains or waterways occurs, advise emergency services.

PROTECTIVE ACTIONS FOR SPILL

From IERG (Canada/Australia) Isolation Distance -Downwind Protection Distance -

From US Emergency Response Guide 2000 Guide No guide found.

FOOTNOTES

1 PROTECTIVE ACTION ZONE is defined as the area in which people are at risk of harmful exposure. This zone assumes that random changes in wind direction confines the vapour plume to an area within 30 degrees on either side of the predominant wind direction, resulting in a crosswind protective action distance equal to the downwind protective action distance.

2 PROTECTIVE ACTIONS should be initiated to the extent possible, beginning with those closest to the spill and working away from the site in the downwind direction. Within the protective action zone a level of vapour concentration may exist resulting in nearly all unprotected persons becoming incapacitated and unable to take protective action and/or incurring serious or irreversible health effects.

3 INITIAL ISOLATION ZONE is determined as an area, including upwind of the incident, within which a high probability of localised wind reversal may expose nearly all persons without appropriate protection to life-threatening concentrations of the material.

4 SMALL SPILLS involve a leaking package of 200 litres (55 US gallons) or less, such as a drum (jerrican or box with inner containers). Larger packages leaking less than 200 litres and compressed gas leaking from a small cylinder are also considered "small spills". LARGE SPILLS involve many small leaking packages or a leaking package of greater than 200 litres, such as a cargo tank, portable tank or a "one-tonne" compressed gas cylinder.

5 Guide No guide found. is taken from the US DOT emergency response guide book.

6 IERG information is derived from CANUTEC - Transport Canada.

ACUTE EXPOSURE GUIDELINE LEVELS (AEGL) (in ppm)

AEGL 1: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience notable discomfort, irritation, or certain asymptomatic nonsensory effects. However, the effects are not disabling and are transient and reversible upon cessation of exposure.

AEGL 2: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience irreversible or other serious, long-lasting adverse health effects or an impaired ability to escape.

AEGL 3: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience life-threatening health effects or death.

Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING

- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- Prevent concentration in hollows and sumps.
- DO NOT enter confined spaces until atmosphere has been checked.
- DO NOT allow material to contact humans, exposed food or food utensils.
- Avoid contact with incompatible materials.
- When handling, DO NOT eat, drink or smoke.
- Keep containers securely sealed when not in use.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately.
- Launder contaminated clothing before re-use.
- Use good occupational work practice.
- Observe manufacturer's storing and handling recommendations.

• Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained. Empty containers may contain residual dust which has the potential to accumulate following settling. Such dusts may explode in the presence of an appropriate ignition source.

- Do NOT cut, drill, grind or weld such containers.
- In addition ensure such activity is not performed near full, partially empty or empty containers without appropriate workplace safety authorisation or permit.


RECOMMENDED STORAGE METHODS

- Polyethylene or polypropylene container.
- Check all containers are clearly labelled and free from leaks.

STORAGE REQUIREMENTS

- - Store in original containers.
- Keep containers securely sealed.
- Store in a cool, dry, well-ventilated area.
- Store away from incompatible materials and foodstuff containers.
- Protect containers against physical damage and check regularly for leaks.
- Observe manufacturer's storing and handling recommendations.

SAFE STORAGE WITH OTHER CLASSIFIED CHEMICALS

X: Must not be stored together

O: May be stored together with specific preventions

+: May be stored together

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE CONTROLS

Source	Material	TWA ppm	TWA mg/m³	STEL ppm	STEL mg/m³	Peak ppm	Peak mg/m³	TWA F/CC	Notes
US - Oregon Permissible Exposure Limits (Z-3)	C.I. Solvent Yellow 14 (Inert or Nuisance Dust: Total dust)		10						(d)
US OSHA Permissible Exposure Levels (PELs) - Table Z3	C.I. Solvent Yellow 14 (Inert or Nuisance Dust: (d) Respirable fraction)		5						
US OSHA Permissible Exposure Levels (PELs) - Table Z3	C.I. Solvent Yellow 14 (Inert or Nuisance Dust: (d) Total dust)		15						
US - Hawaii Air Contaminant Limits	C.I. Solvent Yellow 14 (Particulates not other wise regulated - Total dust)		10						
US - Hawaii Air Contaminant Limits	C.I. Solvent Yellow 14 (Particulates not other wise regulated - Respirable fraction)		5						
US - Oregon Permissible Exposure Limits (Z-3)	C.I. Solvent Yellow 14 (Inert or Nuisance Dust: Respirable fraction)		5						(d)
US ACGIH Threshold Limit Values (TLV)	C.I. Solvent Yellow 14 (Particles (Insoluble or Poorly Soluble) [NOS] Inhalable particles)		10						See Appendix B current TLV/BEI Book

US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants	C.I. Solvent Yellow 14 (Particulates not otherwise regulated Respirable fraction)	5	
US - Wyoming Toxic and Hazardous Substances Table Z1 Limits for Air Contaminants	C.I. Solvent Yellow 14 e (Particulates not otherwise regulated (PNOR)(f)- Respirable fraction)	5	
US - Michigan Exposure Limits for Air Contaminants	C.I. Solvent Yellow 14 (Particulates not otherwise regulated, Respirable dust)	5	
Canada - Prince Edward Island Occupational Exposure Limits	C.I. Solvent Yellow 14 (Particles (Insoluble or Poorly Soluble) [NOS] Inhalable particles)	10	See Appendix B current TLV/BEI Book

MATERIAL DATA

C.I. SOLVENT YELLOW 14:

■ It is the goal of the ACGIH (and other Agencies) to recommend TLVs (or their equivalent) for all substances for which there is evidence of health effects at airborne concentrations encountered in the workplace.

At this time no TLV has been established, even though this material may produce adverse health effects (as evidenced in animal experiments or clinical experience). Airborne concentrations must be maintained as low as is practically possible and occupational exposure must be kept to a minimum.

NOTE: The ACGIH occupational exposure standard for Particles Not Otherwise Specified (P.N.O.S) does NOT apply.

PERSONAL PROTECTION

Consult your EHS staff for recommendations

EYE

- Safety glasses with side shields.
- Chemical goggles.

 Contact lenses pose a special hazard; soft lenses may absorb irritants and all lenses concentrate them. DO NOT wear contact lenses.

HANDS/FEET

■ NOTE: The material may produce skin sensitization in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: such as:

- frequency and duration of contact,
- chemical resistance of glove material,
- glove thickness and
- dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739).

- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374) is recommended.
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374) is recommended.
- Contaminated gloves should be replaced.

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Experience indicates that the following polymers are suitable as glove materials for protection against undissolved, dry solids, where abrasive particles are not present.

- polychloroprene
- nitrile rubber
- butyl rubber
- fluorocaoutchouc
- polyvinyl chloride

Gloves should be examined for wear and/ or degradation constantly.

OTHER

- Overalls.
- P.V.C. apron.
- Barrier cream.
- Skin cleansing cream.
- Eye wash unit.

RESPIRATOR

- Respirators may be necessary when engineering and administrative controls do not adequately prevent exposures.
- The decision to use respiratory protection should be based on professional judgment that takes into account toxicity information, exposure measurement data, and frequency and likelihood of the worker's exposure ensure users are not subject to high thermal loads which may result in heat stress or distress due to personal protective equipment (powered, positive flow, full face apparatus may be an option).
- Published occupational exposure limits, where they exist, will assist in determining the adequacy of the selected respiratory. These
 may be government mandated or vendor recommended.
- Certified respirators will be useful for protecting workers from inhalation of particulates when properly selected and fit tested as part
 of a complete respiratory protection program.
- Use approved positive flow mask if significant quantities of dust becomes airborne.
- Try to avoid creating dust conditions.

RESPIRATOR

Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
10 x PEL	P1	-	PAPR-P1
	Air-line*	-	-
50 x PEL	Air-line**	P2	PAPR-P2
100 x PEL	-	P3	-
		Air-line*	-
100+ x PEL	-	Air-line**	PAPR-P3

* - Negative pressure demand ** - Continuous flow

Explanation of Respirator Codes:

Class 1 low to medium absorption capacity filters.

Class 2 medium absorption capacity filters.

Class 3 high absorption capacity filters.

PAPR Powered Air Purifying Respirator (positive pressure) cartridge.

Type A for use against certain organic gases and vapors.

Type AX for use against low boiling point organic compounds (less than 65°C).

Type B for use against certain inorganic gases and other acid gases and vapors.

Type E for use against sulfur dioxide and other acid gases and vapors.

Type K for use against ammonia and organic ammonia derivatives

Class P1 intended for use against mechanically generated particulates of sizes most commonly encountered in industry, e.g. asbestos, silica.

Class P2 intended for use against both mechanically and thermally generated particulates, e.g. metal fume.

Class P3 intended for use against all particulates containing highly toxic materials, e.g. beryllium.

The local concentration of material, quantity and conditions of use determine the type of personal protective equipment required.

Use appropriate NIOSH-certified respirator based on informed professional judgement. In conditions where no reasonable estimate of exposure can be made, assume the exposure is in a concentration IDLH and use NIOSH-certified full face pressure demand SCBA with a minimum service life of 30 minutes, or a combination full facepiece pressure demand SAR with auxiliary self-contained air supply. Respirators provided only for escape from IDLH atmospheres shall be NIOSH-certified for escape from the atmosphere in which they will be used.

ENGINEERING CONTROLS

• Local exhaust ventilation is required where solids are handled as powders or crystals; even when particulates are relatively large, a certain proportion will be powdered by mutual friction.

- Exhaust ventilation should be designed to prevent accumulation and recirculation of particulates in the workplace.
- If in spite of local exhaust an adverse concentration of the substance in air could occur, respiratory protection should be considered. Such protection might consist of:

(a): particle dust respirators, if necessary, combined with an absorption cartridge;

- (b): filter respirators with absorption cartridge or canister of the right type;
- (c): fresh-air hoods or masks
- Build-up of electrostatic charge on the dust particle, may be prevented by bonding and grounding.
- Powder handling equipment such as dust collectors, dryers and mills may require additional protection measures such as explosion venting.

Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to efficiently remove the contaminant.

Type of Contaminant:	Air Speed:
----------------------	------------

direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation 1-2.5 m/s (200-500 f/min.) into zone of rapid air motion)

grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion).	2.5-10 m/s (500-2000 f/min.)
Within each range the appropriate value depends on:	
Lower end of the range	Upper end of the range
1: Room air currents minimal or favorable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only	2: Contaminants of high toxicity
3: Intermittent, low production.	3: High production, heavy use
4: Large hood or large air mass in motion	4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 4-10 m/s (800-2000 f/min) for extraction of crusher dusts generated 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL PROPERTIES

Solid. Does not mix with water. Floats on water.			
State	Divided solid	Molecular Weight	248.29
Melting Range (°F)	267.8-275	Viscosity	Not Applicable
Boiling Range (°F)	Not available.	Solubility in water (g/L)	Immiscible
Flash Point (°F)	Not available	pH (1% solution)	Not applicable.
Decomposition Temp (°F)	Not available	pH (as supplied)	Not applicable
Autoignition Temp (°F)	Not available.	Vapour Pressure (mmHG)	Negligible
Upper Explosive Limit (%)	Not available.	Specific Gravity (water=1)	0.6
Lower Explosive Limit (%)	Not available.	Relative Vapor Density (air=1)	Not applicable
Volatile Component (%vol)	Negligible	Evaporation Rate	Not applicable

APPEARANCE

Red/orange/ yellow powder; does not mix with water. Soluble in many organic solvents.

Section 10 - CHEMICAL STABILITY

CONDITIONS CONTRIBUTING TO INSTABILITY

• Presence of incompatible materials.

- Product is considered stable.
- Hazardous polymerization will not occur.

STORAGE INCOMPATIBILITY

Avoid reaction with oxidizing agents.

For incompatible materials - refer to Section 7 - Handling and Storage.

Section 11 - TOXICOLOGICAL INFORMATION

C.I. SOLVENT YELLOW 14

TOXICITY AND IRRITATION

■ unless otherwise specified data extracted from RTECS - Register of Toxic Effects of Chemical Substances.

■ Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's edema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact

urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitization potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitizing substance which is widely distributed can be a more important allergen than one with stronger sensitizing potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested.

 NOTE: Detailed analysis of the molecular structure, by various Authorities/ Agencies and in other cases by Chemwatch, indicates that the azo colourant can split off carcinogenic arylamines.

The azo linkage is considered the most labile portion of an azo dye. The linkage easily undergoes enzymatic breakdown, but thermal or photochemical breakdown may also take place. The breakdown results in cleavage of the molecule and in release of the component amines. Water solubility determines the ultimate degradation pathways of the dyes. For example the azo linkage of many azo pigments is, due to very low solubility in water, not available for intracellular enzymatic breakdown but may be susceptible to endogenous micro-organisms found in the bladder or in the gut.

After cleavage of the azo linkage by bacteria, the component aromatic amines are absorbed in the intestine and excreted in the urine. Twenty-two of the component amines are recognised as potential human carcinogens, and/or several of them have shown carcinogenic potential on experimental animals. Sulfonation of the dye reduces the toxicity by enhancement of the excretion.

The component amines which may be released from azo dyes are mostly aromatic amines (compounds where an amine group or amine-generating group(s) are connected to an aryl moiety). In general, aromatic amines known as carcinogenic may be grouped into five groups

- Anilines, e.g. o-toluidine.
- Extended anilines, e.g. benzidine.
- Fused ring amines, e.g. 2-naphthylamine.
- Aminoazo and other azo compounds, e.g. 4-(phenylazo)aniline.
- Heterocyclic amines.

The aromatic amines containing moieties of anilines, extended anilines and fused ring amines are components of the majority of the industrially important azo dyes.

Reductive fission of the azo group, either by intestinal bacteria or by azo reductases of the liver and extra-hepatic tissues can cause benzidine-based aromatic amines to be released. Such breakdown products have been detected in animal experiments as well as in man (urine). Mutagenicity, which has been observed with numerous azo colourants in in vitro test systems, and the carcinogenicity in animal experiments are attributed to the release of amines and their subsequent metabolic activation. There are now epidemiological indications that occupational exposure to benzidene-based azo colourants can increase the incidence of bladder carcinoma. The acute toxicity of azo dyes is low.. However, potential health effects are recognised.

Despite a very broad field of application and exposure, sensitising properties of azo dyes have been identified in relatively few reports. Red azoic dyes have been linked to allergic contact dermatitis in heavily exposed workers. Furthermore, textiles coloured with disperse azo dyes have caused allergic dermatitis in a few cases.

No significant acute toxicological data identified in literature search.

The substance is classified by IARC as Group 3:

NOT classifiable as to its carcinogenicity to humans. Evidence of carcinogenicity may be inadequate or limited in animal testing.

Bladder tumors recorded. Carcinogenic by RTECS criteria.

CARCINOGEN

Sudan I	International Agency for Research on Cancer (IARC) - Agents Reviewed by the IARC Monographs	Group	3
C.I. SOLVENT YELLOW 14	US Environmental Defense Scorecard Recognized Carcinogens	Reference(s)	P65
C.I. SOLVENT YELLOW 14	US Environmental Defense Scorecard Suspected Carcinogens	Reference(s)	P65

Section 12 - ECOLOGICAL INFORMATION

Refer to data for ingredients, which follows: C.I. SOLVENT YELLOW 14:

■ Half- life Soil - High (hours):	672
■ Half- life Soil - Low (hours):	168
■ Half- life Air - High (hours):	32.6
■ Half- life Air - Low (hours):	3.26
■ Half- life Surface water - High (hours):	640

■ Half- life Surface water - Low (hours):	168
Half- life Ground water - High (hours):	1344
■ Half- life Ground water - Low (hours):	336
Aqueous biodegradation - Aerobic - High (hours):	672
Aqueous biodegradation - Aerobic - Low (hours):	168
Aqueous biodegradation - Anaerobic - High (hours):	2688
Aqueous biodegradation - Anaerobic - Low (hours):	672
■ Aqueous photolysis half- life - High (hours):	640
■ Aqueous photolysis half- life - Low (hours):	213
■ Aqueous photolysis half- life - High (hours):	640
■ Aqueous photolysis half- life - Low (hours):	213
Photooxidation half- life water - High (hours):	28000
Photooxidation half- life water - Low (hours):	283
Photooxidation half- life air - High (hours):	32.6
Photooxidation half- life air - Low (hours):	3.26

■ May cause long-term adverse effects in the aquatic environment.

■ Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash-waters.

Wastes resulting from use of the product must be disposed of on site or at approved waste sites.

■ Biodegradation of azo dyes can occur in both aerobic and anaerobic environments. In both cases, the initial step in the biodegradation is the reductive cleavage of the azo-bond. Under aerobic conditions the initial step of cleavage of the azo-bond is typically followed by hydroxylation and ring opening of the aromatic intermediates.

The electron-withdrawal character of azo-groups generates electron deficiency and thus makes the compounds less susceptible to oxidative catabolism. As a consequence, many of these chemicals tend to persist under aerobic environmental conditions. Aerobic degradation of azo dyes is not expected as oxygen is often an inhibitor of azo reduction. Biodegradation of these dyes by aerobic sludge is reported to be insignificant as greater than 50% of the dye remains unchanged or is only slightly modified.

Reduction of azo dyes occurs primarily under anaerobic conditions through cleavage of the azo linkage. While azo dyes are generally stable under aerobic conditions, they are susceptible to reductive degradation under the anaerobic conditions characteristic of sediment. A possible pathway of azo dye degradation is azo-reductase under anaerobic conditions followed by mineralisation under aerobic conditions, with the resultant end products being NH3, CO2 and H2O.

The great majority of azo dyes are water soluble and they colour different substrates by becoming physically attached. The attachment may be due to adsorption, absorption or mechanical adherence. Most of the commercial available azo dyes are in fact formulations of several components in order to improve the technical properties of the dyeing process.

The content of a specific dye lies in the range of 10 to 98%.

Soluble azo dyes, which are likely to remain in solution and therefore are unlikely to adsorb to sediment or sludge, the above anaerobic pathway is unlikely to occur.

An important natural abiotic degradation mechanism is photolysis and hydrolysis as a function of pH in the range of pH 4-9. The evidence of the role of hydrolysis in degradation of azo dyes is not conclusive. Even though the dyes have absorption maxima in the range of visible and UV-light, photo-reduction does not play a dominant role in the environmental fate of dyes, although its contribution to the total mineralisation of widely dispersed trace amounts may be underestimated. Furthermore, hydrolysis seems not to be an important degradation pathway either, except for reactive dyes, which are hydrolysed rapidly in aqueous solution. For the metabolites, photolysis may be of some importance, whereas hydrolysis does not seem to be an important degradation route.

If the dye is not broken during rigors of biological waste treatment, it is unlikely to degrade rapidly in the less severe conditions of the environment. The reductive cleavage of the azo-bond is the major degradation pathway for azo dyes. Photo-reduction of azo dyes to hydrazines and amines is possible, but it is likely to be very slow, except in oxygen-poor water. The stability of the dyes to visible and UV-light is very high, and therefore only slow degradation has been shown. The photo-stability of azo dyestuffs is high in pure water but in the presence of natural humic materials, the photo decomposition is strongly accelerated, probably through oxidation by single oxygen or oxy-radicals

Although azo dyes are generally not readily or inherently biodegradable, bioaccumulation or adsorption to sediment is not expected due to their, generally, low partition coefficient

Certain of the Acid and Basic azo dyes are acutely toxic to aquatic organisms (fish, crustaceans, algae and bacteria); this is also true of some Direct dyes. Reactive dyes generally have very high effect concentration levels (>100 mg/l) and are not considered to be toxic to aquatic organisms. The non-ionic (Disperse and Solvent) dyes are toxic or potentially toxic. Solvent dyes may even be acutely toxic to aquatic organisms. The Mordant dyes (nonionics) generally do not exhibit any toxicity at levels below 100 mg/l.

DO NOT discharge into sewer or waterways.

Eastaviaity

Ingredient Persistence: Water/Soil C.I. Solvent Yellow 14 LOW				Persistence: Air LOW					Bioaccumulation LOW						Mobility LOW			
GESAMP/EHS C	OMPOS	ITE LIS	T - GES	SAMP I	Hazar	rd Pr	ofiles	5										
Name / Cas No /	EHS	TRN	A1a	A1b	A1	A2	B1	B2	C1	C2	C3	D1	D2	D3	E1	E2	E3	

RTECS No

E2~/	224	574	4	4	4	NR	(4)	NI	(1)	(1)	(2)	(1)	(1)	СМ	s	3
CAS:842-	6															
07.0/																

07-9/

Legend: EHS=EHS Number (EHS=GESAMP Working Group on the Evaluation of the Hazards of Harmful Substances Carried by Ships) NRT=Net Register Tonnage, A1a=Bioaccumulation log Pow, A1b=Bioaccumulation BCF, A1=Bioaccumulation, A2=Biodegradation, B1=Acuteaquatic toxicity LC/ECIC50 (mg/l), B2=Chronic aquatic toxicity NOEC (mg/l), C1=Acute mammalian oral toxicity LD50 (mg/kg), C2=Acutemammalian dermal toxicity LD50 (mg/kg), C3=Acute mammalian inhalation toxicity LC50 (mg/kg), D1=Skin irritation & corrosion, D2=Eye irritation& corrosion, D3=Long-term health effects, E1=Tainting, E2=Physical effects on wildlife & benthic habitats, E3=Interference with coastal amenities, For column A2: R=Readily biodegradable, NR=Not readily biodegradable. For column D3: C=Carcinogen, M=Mutagenic, R=Reprotoxic, S=Sensitising, A=Aspiration hazard, T=Target organ systemic toxicity, L=Lunginjury, N=Neurotoxic, I=Immunotoxic. For column E1: NT=Not tainting (tested), T=Tainting test positive. For column E2: Fp=Persistent floater, F=Floater, S=Sinking substances. The numerical scales start from 0 (no hazard), while higher numbers reflect increasing hazard. (GESAMP/EHS Composite List of Hazard Profiles - Hazard evaluation of substances transported by ships)

Section 13 - DISPOSAL CONSIDERATIONS

Disposal Instructions

All waste must be handled in accordance with local, state and federal regulations.

Puncture containers to prevent re-use and bury at an authorized landfill.

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- Reduction
- Reuse
- Recycling
- Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

DO NOT allow wash water from cleaning equipment to enter drains. Collect all wash water for treatment before disposal.

- Recycle wherever possible.
- Consult manufacturer for recycling options or consult Waste Management Authority for disposal if no suitable treatment or disposal facility can be identified.
- Dispose of by: Burial in a licensed land-fill or Incineration in a licensed apparatus (after admixture with suitable combustible material)
- Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed.

Section 14 - TRANSPORTATION INFORMATION

NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS: DOT, IATA, IMDG

Section 15 - REGULATORY INFORMATION

REGULATIONS

C.I. Solvent Yellow 14 (CAS: 842-07-9) is found on the following regulatory lists;

"Canada Domestic Substances List (DSL)", "Canada National Pollutant Release Inventory (NPRI)", "Canada Toxicological Index Service -Workplace Hazardous Materials Information System - WHMIS (English)", "Canada Toxicological Index Service - Workplace Hazardous Materials Information System - WHMIS (French)", "International Agency for Research on Cancer (IARC) - Agents Reviewed by the IARC Monographs", "US - California Occupational Safety and Health Regulations (CAL/OSHA) - Hazardous Substances List", "US - California Proposition 65 - Carcinogens", "US - California Proposition 65 - Priority List for the Development of NSRLs for Carcinogens", "US - Maine Chemicals of High Concern List", "US - Pennsylvania - Hazardous Substance List", "US EPCRA Section 313 Chemical List", "US List of Lists - Consolidated List of Chemicals Subject to the Emergency Planning and Community Right-to-Know Act (EPCRA) and Section 112(r) of the Clean Air Act", "US Toxic Substances Control Act (TSCA) - Inventory"

Section 16 - OTHER INFORMATION

LIMITED EVIDENCE

Cumulative effects may result following exposure*.
 * (limited evidence).

Reasonable care has been taken in the preparation of this information, but the author makes no warranty of merchantability or any other warranty, expressed or implied, with respect to this information. The author makes no representations and assumes no liability for any direct, incidental or consequential damages resulting from its use. For additional technical information please call our toxicology department on +800 CHEMCALL.

■ Classification of the mixture and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. A list of reference resources used to assist the committee may be found at: www.chemwatch.net/references.

■ The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.

Issue Date: Jun-4-2008 Print Date:Sep-4-2010